On the Degree of Multivariate Polynomials over Fields of Characteristic 2
نویسنده
چکیده
We show that a problem of deciding whether a formula for a multivariate polynomial of n variables over a finite field of characteristic 2 has degree n when reduced modulo a certain Boolean ideal belongs to ⊕ P. When the formula is allowed to have succinct representations as sums of monomials, the problem becomes ⊕ P-complete. key words: degree of multivariate polynomials, finite field of characteristic 2, parity P-complete, Hamilton path
منابع مشابه
Fast polynomial factorization, modular composition, and multipoint evaluation of multivariate polynomials in small characteristic
We obtain randomized algorithms for factoring degree n univariate polynomials over Fq that use O(n + n log q) field operations, when the characteristic is at most n. When log q < n, this is asymptotically faster than the best previous algorithms (von zur Gathen & Shoup (1992) and Kaltofen & Shoup (1998)); for log q ≥ n, it matches the asymptotic running time of the best known algorithms. The im...
متن کاملBounded-degree factors of lacunary multivariate polynomials
In this paper, we present a new method for computing boundeddegree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary representation and a degree bound d and computes the irreducible factors of degree at most d of f in time polynomial in the lacunary size of f and in ...
متن کاملSummation Polynomial Algorithms for Elliptic Curves in Characteristic Two
The paper is about the discrete logarithm problem for elliptic curves over characteristic 2 finite fields F2n of prime degree n. We consider practical issues about index calculus attacks using summation polynomials in this setting. The contributions of the paper include: a choice of variables for binary Edwards curves (invariant under the action of a relatively large group) to lower the degree ...
متن کاملDeterministic distinct-degree factorization of polynomials over finite fields
A deterministic polynomial time algorithm is presented for finding the distinctdegree factorization of multivariate polynomials over finite fields. As a consequence, one can count the number of irreducible factors of polynomials over finite fields in deterministic polynomial time, thus resolving a theoretical open problem of Kaltofen from 1987.
متن کاملFast polynomial factorization and modular composition
We obtain randomized algorithms for factoring degree n univariate polynomials over Fq requiring O(n1.5+o(1) log q + n1+o(1) logq) bit operations. When log q < n, this is asymptotically faster than the best previous algorithms [J. von zur Gathen and V. Shoup, Comput. Complexity, 2 (1992), pp. 187–224; E. Kaltofen and V. Shoup, Math. Comp., 67 (1998), pp. 1179– 1197]; for log q ≥ n, it matches th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-D شماره
صفحات -
تاریخ انتشار 2005